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Geometrical ambiguity means the cases in which more than one powder

indexing solution exists. Using a new function implemented in the powder

Edited by J.-G. Eon, Universidade Federal do Rio indexing software CONOGRAPH, unit cells that involve geometrical ambiguity

de Janeiro, Brazil are exhaustively searched. As a result, many unknown cases are obtained,

although the number of such unit cells is still rather limited. It is also proven that
Keywords: powder indexing; geometrical the number of solutions in powder auto-indexing is not always unique, but
ambiguity; derivative lattices; computer generally finite.

programs; multiple solutions.

Supporting information: this article has

supporting information at journals.iucr.org/a 1. Introductlon

It is known that crystal structures with distinct unit cells can
have powder diffraction patterns with perfectly identical peak
positions. This phenomenon known as geometrical ambiguity
was initially studied by Mighell & Santoro (1975), since the
phenomenon causes a problem in powder indexing.

A new function (for a generalized version, see Table 1)
introduced in a previous paper (Oishi-Tomiyasu, 2014a) can
output all unit-cell parameters with the same peak positions, if
ambiguity occurs for the input unit cell. This is impossible for
the functions proposed in previous studies by Santoro et al.
(1980) and Kroll et al. (2011), because they assume that
distinct unit cells with the same peak positions are derivative
of each other.

The short computation time of this new function enables an
exhaustive search for unit cells that involve geometrical
ambiguity (Table 2 of §3; although our function can also search
for unit cells with almost the same peak positions, such unit
cells were excluded from the table). All of the metric tensors
corresponding to the unit cells in the table have rather small
determinants, compared to those contained in the searched
region. Hence it is naturally expected that all the cases of
geometrical ambiguity are given.

In §4, it is proved that the number of solutions in powder
indexing is not unique, but generally finite. More precisely, for
any A C R_,, the number of pairs (L*, (G, H)) of a reciprocal
lattice L* C R and a type of systematic absence (G, H) that
have A as the set of d spacings is finite. This does not hold for
lattices of dimension greater than four. All proofs are included
in the supporting information.

The new function is available on the CONOGRAPH

6~ 7N\{6 5/ 5/ graphic user interface (http:/conograph.osdn.jp/Conograph
- GUlI/web_page.html).

1.1. Notation and symbols

The following positive-definite symmetric matrix S of size 3
© 2016 International Union of Crystallography determined from the unit-cell parameters a, b, ¢, o, B, y (or
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Table 1

A recursive function for lattice determination from A C R_,,.

The asterisk symbol in line 19 signifies that the values of p,;, and p,,. are
uniquely determined because equations (3) and (4) define a polyhedral convex
cone.

void func(A, M, N, S, m,n, gmin, ¢maz, Ans)

(Input)

A : a sorted sequence (qi,...,q:) of t positive
numbers

M :  a natural number

1<N<4 the dimension of lattices
S an N x N metric tensor (s;;)1<ij<n
m,n : integers 1 < m < n < N indicating the

algorithm is determining the (m,n)-entry
of S

numbers indicating
{LM < spn < Ipe

dmin,; 9maz

7 if m=mn,

Lt < Smm + Snn + 25mn < L25E otherwise.

(Output)
Ans : an array of N x N Minkowski-reduced met-
ric tensors S := (5;;) that satisfy

Snn < g, AN0,8nN] CA(S),

Snns Smm + Snn + 28mn € A
(Start)
1: Take integers I and J such that AN [gmin, @maz] = (1, , q7)-
2: forl=1to J do

3: if m = n then

4: Spn = #’Ili

5 else

6: Smn = Snm ‘= %(% — Smm — Snn)-

T end if

8: if m =1 then

9: if n > N then

10: Insert S in Ans.

11: else

12: T := (sij)1<ij<n- /¥ an n x n submatrix of S */.
13: tg::max{lgigt:qh.n,q;‘ﬂGA(T)}.

14: func(A, M, N, S,n+ 1,n + 1, M%s,,,, M?q,,, Ans).
15: end if

16: else

17: Take pmin, Pmaz that satisfy the following:

18: Pmin < Sm—1m—1 1 Snn + 28m—1n < Pmax

19 <= Sm—1, and the other entries of S satisfy (3) and (4)*.
20: func(A, M, N, S,m — 1,1, S, M*pin, M*pmaz, Ans).
21: end if

22: end for

the reciprocal unit-cell parameters a*, b*, c*, a*, B*, y*) is
called a 3 x 3 metric tensor:

(@)’

a*b* cos y*

a*b* cos y*
vy

b*c* cos o* (c*)?

a*c* cos B*
S = b*c* cos o*
a*c* cos B*

@ abcosy accosp

bc cos o . 1)
2

= | abcosy b?

accos B bccosa c

If the positions of powder diffraction peaks are represented
as q values (d=gq '? is the d spacing), A(S):=
{'vSv : 0 # v € Z*} gives the set of all the g values. Hence, if
two distinct unit cells have the same A(S), their peak positions
in powder diffraction patterns are perfectly identical. Such
unit cells provide a case of geometrical ambiguity.

2. Algorithm

For simplicity, we assume that all values are exact and do not
include errors. However, it is possible to extend the algorithm
in Table 1 to the case of inaccurate values [see §2.2 of Oishi-
Tomiyasu (2014a)].

Let S be an unknown N x N metric tensor with N < 4. For
a given input integer M >0 and A(S) := {'vSv: 0 # v € Z"},
the algorithm returns a list containing all the N x N metric
tensors S, that satisfy A(S) C A(S,) C M2A(S).

Recall that a set of vectors vy, ..., v, of an N-dimensional
lattice L C R" is said to be primitive if it is a subset of some
basis of L. An N x N metric tensor S := (s;) is Minkowski-
reduced if the following holds for any 1 <n < N:

veZNand(eh...,en,V)}’ 2)

¢ N AN
e,Se, = min . - N
is a primitive set of Z

where e, is a vector with 1 in its nth component and 0 in the
remaining components. For any N <4, § is Minkowski-
reduced if and only if the following inequalities hold [cf.
Lemma 1.2 of ch. 12, Cassels (1978)]:

0<syy < ..o < Syns
s; < YwSvforany1 < j < N and vectors v with 3)
vi=-1,0,1(1<i<j),v,=1v,=0(G<k =<N).

1

The following is frequently added to the definition of
Minkowski reduction:

si1 =0 (1 <i<N). 4)

Hereafter, equations (3) and (4) are adopted as the inequal-
ities of the Minkowski reduction for N < 4.

Table 1 presents a recursive function to generate N x N
metric tensors from a set A C R_. If the recursive procedure
begins with arguments m = n = 1, g, = ¢, and ¢, = M*q,,
all the metric tensors that satisfy the following, in addition to
(3) and (4), are enumerated in the output array:

syv < g, ANTJ0,sy0] C A(S) :={'wSv:0#£veZV),
Sos Sy + S 28, € MT2A.

®)

Hence, if a metric tensor S satisfies A C A(S) C M72A, S is
output in the array when g, is sufficiently large. After the
algorithm terminates, it is possible to determine whether or
not g, was sufficiently large to ensure that all such S had been
gained, by verifying if #, < holds in line 13 and the recursive
function is always called with the argument g, ,, < g,. If the
inequalities always hold, all of the searched § are contained in
the output. Otherwise, all such § may not have been obtained.
The latter case may be considered to be caused by a similar
reason to the dominant zone problem in powder indexing (cf.
Shirley, 1980).

The algorithm is completed in a finite number of steps, even
if A(S,) of an N x N metric tensor S, is used instead of a finite
set A [this can be programmed by inputting S, instead of
A(S,) and computing the elements of A(S,) in a finite interval
[a, b] when they are necessary]. Although ¢ = oo in such cases,
1, in line 13 of Table 1 is always finite. This is a consequence of
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Proposition 1 (see Appendix A in the supporting information
for the proof).

Proposition 1. Let § and S, be positive-definite metric
tensors of sizes N and N,. If 1 <N, < min{4, N}, then
A(S) ¢ A(S,). Therefore, A(S) ¢ M~2A(S,) also holds for
any integer M > 0.

The algorithm also relies on the fact that s, ,,; < g,, holds in
line 13. This is proved as follows: g, € A C A(S) does not
belong to A(T), where T is the matrix defined in line 12.
Hence, there exists v € Z" such that e, ..., e,, v are linearly
independent and 'vSv = g,. Recall that the nth successive
minimum of the Minkowski-reduced S is defined as follows:

min max{'v,Sv,: 1 <i <n}: Viy...,v, €ZN
are linearly independent |

©)

If 1<n<N<4 s, of a Minkowski-reduced (s;);<; j<y
equals its nth successive minimum (c¢f. van der Waerden,
1956). Therefore, s,,,1,.1 < ¢,, holds in line 13 if 7, <t.

After the algorithm finishes executing, it is possible to
reduce the number of candidate solutions in Ans by (a)
checking if A C A(S)N [0, g,] and A(S)N[0, M~2q,] C M~2A
hold, (b) removing either of S # S,, if they satisfy S, = WS'W
for some W € GLy(Z).

If the algorithm in Table 1 is used as a powder indexing
method, it is not adversely affected by systematic absences as
explained in §4. The dominant zone problem is also resolved
theoretically as mentioned above. However, these advanta-
geous properties are not exhibited if the A input as
A(Sy) N[0, q,] includes errors and mistakes. Furthermore, its
execution time diverges rapidly if M exceeds 1, while it is
completed within 1s if M = 1. For these reasons, another
powder indexing method was adopted for CONOGRAPH
(Oishi-Tomiyasu, 2014b).

3. Table of cases of geometrical ambiguity

For successful powder auto-indexing, it is important to know
how often geometrical ambiguity occurs. In what follows, we
discuss this problem. Geometrical ambiguity caused by a
limited observed range is not considered herein, although the
new function can also deal with such cases (cf. §3.1 Oishi-
Tomiyasu, 2014a).

Firstly, it is known that geometrical ambiguity occurs for
any hexagonal and rhombohedral cells; for any real numbers ¢
and d, the following metric tensors have the same A(S),
although they are not equivalent over Z:

(a) Hexagonal case

2 -1
c|l —1

0 2 00
2 0],cf0 6 0
0 0 d 0 0 d

(b) Rhombohedral case

d 1 1 2d +2 0 2
cll d 1],c 0 2d-2 0
1 1 d 2 0 d

Consequently, even if S; and §, are not scalar multiples of
rational matrices, A(S;) = A(S,) may occur.

Conversely, if geometrical ambiguity occurs to metric
tensors S; and S,, and S, and S, are not scalar multiples of
rational matrices, an infinite number of positive-definite
rational metric tensors T, T, with A(T,) = A(T,) are gener-
ated from A(S;) = A(S,). We refer to Lemma A.1 of
Appendix A for the proof.

Thus in order to see how often geometrical ambiguity
occurs, it is sufficient to conduct an extensive search of metric
tensors with rational entries. The algorithm in Table 1 was
used with the argument M =1 for the purpose. A metric
tensor S = (s;);; j<3 is contained in the searched region if it
satisfies the following:

(1) S11 S22» S335 2512, 2843, and 2s,; are integers, and their
greatest common divisor is 1.

(ii) It is Niggli-reduced (cf. ch. 9.2.2, Hahn, 1983).

(iii) The obtained unit cells do not coincide with the above
hexagonal and rhombohedral cases.

(iv) 543 < 115.

If the upper bound in the last condition is increased, a scalar
multiple of any metric tensors with rational entries is
contained in the searched region.

The results of the exhaustive search are presented in Table
2. In this table, metric tensors are represented by their
corresponding reciprocal unit-cell parameters, for application
to powder indexing.

Overall, 53 cases consisting of 151 unit-cell parameters were
obtained (Table 2). For example, No. 51 of Table 2 shows that
metric tensors with orthorhombic (I, C), monoclinic (B) and
triclinic symmetry can have perfectly identical peak positions.
Since the number 151 is still small, it is not surprising that the
actual examples of geometrical ambiguities are not known
except for the high-symmetry cases in Mighell & Santoro
(1975).

Considering that a perfect coincidence in peak positions is
less likely to occur when the ratios of the entries of metric
tensors are not represented by small integers, it is naturally
expected that all the cases of geometrical ambiguity are
included in the table or the above two families of rhombo-
hedral and hexagonal cases. It is also expected that five is the
maximum number of metric tensors that have identical peak
positions. However, this conjecture might be a challenge even
for modern mathematics, because it is not proved even that
the unit cells in No. 35 have the same peak positions up to co
(see the footnote of Table 2). Note that all the unit cells in the
table were only confirmed to have the same g values as peak
positions up to max{30000, 50D}, where D is the largest
determinant among the cells in each group. This confirmation
can be carried out computationally. The values of D are
presented in the first column of Table 2.

Acta Cryst. (2016). A72, 73-80
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Table 2

Reciprocal unit cells with perfectly identical peak positions.

The determinants of the metric tensors of the primitive cells are presented herein, not those of the conventional cells [i.e. det S of S in (1)]. As a result, the values
provided are equal to multiplications of det S by 1 (primitive centring), 4 (base- or body-centred) or 16 (face-centred). This is in order to clarify the mysterious
coincidence among the ratios of the determinants of the primitive cells. For example, the ratios computed for the cells in Nos. 51-53 are perfectly identical,

although it is difficult to see this if the determinants of the conventional cells are used, owing to the difference in their centring types.

The Bravais types of the unit cells given by a, b, ¢, «, B, y are presented for application to powder indexing solutions. The method in Oishi-Tomiyasu (2012) was
used for the determination.

Determinant

*

%

Bravais type

No. (Ratio of determinants) a b* c cosa cos fB* cos y in real space

1 113824 (8) 2J/11 442 V11 — 75 -4 -7 Triclinic
19008 (11) V39 42 V4T * - A% Triclinic

2 1 4608 (8) 25 43 NG 0 1 0 Monoclinic (P)
T 6336 (11) 2J/17 23/5 V5 -1 -7 -7 Triclinic

3 T 4608 (8) V5 23 23/5 0 i 0 Monoclinic (B)
1 6336 (11) 272 23 V17 0 * 0 Monoclinic (B)

4 11536 (8) V15 4 V7 N 0 Monoclinic (P)
2112 (11) V23 V15 V7 -2 - -4 Triclinic

5 11536 (8) V7 2 4 0 * 0 Monoclinic (B)
2112 (11) V7 2 V19 0 s 0 Monoclinic (B)

6 1 864 (8) NE] V6 23/2 0 s 0 Monoclinic (B)
11188 (11) V15 V11 2./2 -% 0 - Triclinic

7 1288 (8) V3 V2 243 0 0 0 Orthorhombic (C)
1396 (11) V2 V3 V17 0 = 0 Monoclinic (B)

8 196 (8) NG 1 2 0 0 0 Orthorhombic (C)
132 (11) V6 1 V7 0 Nl 0 Monoclinic (B)

9 1540 (5) V2 V15 NG 0 75 0 Monoclinic (B)
1 864 (8) 272 2.6 NG 0 - 0 Monoclinic (P)

10 1180 (5) VA V3 V3 0 0 0 Orthorhombic (C)
1 288 (8) 23 272 V3 0 0 0 Orthorhombic (P)

11 160 (5) V15 1 1 0 0 0 Orthorhombic (C)
196 (8) 2\/6 2 1 0 0 0 Orthorhombic (P)

12 675/4 (25) 22 NG V5 -1 - - Triclinic
999/4 (37) 272 272 NG -7 — 3% - Triclinic

13 225/4 (25) ‘/Tﬁ ‘/73 V7 0 ﬁ—l 0 Monoclinic (B)
333/4 (37) V7 V3 2 0 = 0 Monoclinic (P)

14 75/4 (25) ¥ ! 2 0 #ﬁ 0 Monoclinic (B)
111/4 (37) V7 1 2 0 v 0 Monoclinic (P)

15 162 (1) L 3 2 0 4 0 Monoclinic (B)
648 (4) 5 NG 2 N -5 -5 Triclinic

16 243/2 (1) o2 £ £ 0 0 0 Orthorhombic (1)
486 (4) V41 V6 2 0 — 375 - Triclinic

17 81/2 (1) /e £ £ 0 0 0 Orthorhombic (1)
162 (4) V14 V6 V2 0 - - Triclinic

18 2772 (1) i £ V2 0 L 0 Monoclinic (B)
54 (4) 272 2 V2 = i 55 Triclinic

19 162 (1) V7 NG NG 5 Ve -3 Triclinic
162 (1) 272 V5 V5 -3 -7 0 Triclinic

76 R Oishi-Tomiyasu - A table of geometrical ambiguities Acta Cryst. (2016). A72, 73-80
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Table 2 (continued)

Determinant Bravais type

No. (Ratio of determinants) a* b* c* coso* cos fB* cos y* in real space

20 58 (1) V5 V5 V3 e v 5 Triclinic
58 (1) V7 V3 V3 1 - S Triclinic

21 27 (1) % ! 2 0 0 0 Orthorhombic (C)
27 (1) o ! V7 0 = 0 Monoclinic (B)

2 t27/4 (1) }ﬁ ! 1 0 0 0 Orthorhombic (C)
t27/4 (1) e i 0 5 0 Monoclinic (B)

23 531/4 (59) V6 NG V5 -1 0% 0 Triclinic
639/4 (71) 272 NG NG —2 -7 -4 Triclinic

24 177/4 (59) V7 2 V2 P Nl N Triclinic
213/4 (71) V7 2 V2 —5 50 0 Triclinic

25 81 (4) V6 2 2 -1 -i% 0 Triclinic
567/4 (7) Vi V6 2 = o = Triclinic

26 135 (5) £ I 22 0 + 0 Monoclinic (B)
1216 (8) V2 NG NG 0 fﬁ 0 Monoclinic (B)
297 (11) 3 22 NG N o 55 Triclinic

27 45 (5) V3 % Vel 0 0 0 Orthorhombic (F)
72 (8) V3 V2 V3 0 0 0 Orthorhombic (C)
199 (11) 1 £ 2V2 0 + 0 Monoclinic (B)

28 115 (5) JTE 1 1 0 0 0 Orthorhombic (F)
124 (8) V6 1 1 0 0 0 Orthorhombic (C)
133 (11) i 1 NG 0 ey 0 Monoclinic (B)

29 1 48 (3) 272 2V2 0 0 1 Hexagonal
1176 (11) V22 V2 1 0 0 0 Orthorhombic (C)
1192 (12) 2\/3 23/2 0 0 0 Orthorhombic (P)

30 13 (3) V2 V2 1 0 0 1 Hexagonal
11 (11) ‘/TTZ ‘/75 0 0 0 Orthorhombic (C)
12 (12) V6 V2 0 0 0 Orthorhombic (P)

31 132 (3) 1 1 V2 0 0 i Hexagonal
+11/2 (11) Q 1 V2 0 0 0 Orthorhombic (C)
16 (12) V3 V2 1 0 0 0 Orthorhombic (P)

32 16 (1) 1 1 1 0 0 0 Cubic (F)
1 64 (4) V2 1 2V2 0 0 0 Orthorhombic (C)
144 (9) 32 V2 1 0 Orthorhombic (1)

33 t2(1) V3 V3 V3 3 H 3 Rhombohedral
18 (4) V2 1 1 0 0 0 Orthorhombic (C)
118 (9) S L 232 0 % 0 Monoclinic (B)

34 1) 1 1 1 0 0 0 Cubic (P)
t4(4) V2 V2 0 0 0 Tetragonal (P)
£9(9) £ £ 0 0 0 Orthorhombic (C)

35 12712 (2) 1 £ ! 0 0 0 Orthorhombic (F)
154 (8) 3 V6 1 0 0 0 Orthorhombic (P)
+1297/4 (11) JTH 3 NG 0 «/%'4 0 Monoclinic (B)

36 $25/2 (2) J—JE £ 1 0 0 0 Orthorhombic (F)
17514 (3) V1 L NG 0 0 0 Orthorhombic (C)
T 50 (8) 10 NG 1 0 0 0 Orthorhombic (P)
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Table 2 (continued)

Determinant

Bravais type

No. (Ratio of determinants) a* b* c* coso* cos fB* cos y* in real space
5 V2 1 .
37 152 (2) % % 3 0 0 0 Orthorhomb%c (F)
1 15/4 (3) 5 5 1 0 0 0 Orthorhombic (C)
110 (8) NG V2 1 0 0 0 Orthorhombic (P)
38 t25/4 (1) V2 V2 V2 -1 -1 -1 Rhombohedral
25 (4) jl—l") f NG 0 0 0 Orthorhombic (C)
125 (4) 3 £ V7 0 Nt 0 Monoclinic (B)
39 504 (1) V2 V2 V2 3 3 3 Rhombohedral
15(4) % £ 1 0 0 0 Orthorhombic (C)
15 (4) o i V3 0 Nt 0 Monoclinic (B)
40 624 (39) NG NG V5 0 % 0 Monoclinic (B)
1 ! 1 s aling
1136 (71) V21 23 NG -7z — = -5 Triclinic
1264 (79) 276 23 NG -7 0 —3 Triclinic
1520 (95) 27 23 NG -z - 0 Triclinic
41 39 (39) £ £ NG 0 %13‘0 0 Monoclinic (B)
i A A
— = ey~ riclinic
95 (95) V7 NG V3 _r 0 W —L Triclinic
v Ve
42 3972 (39) 3 ‘/73 V3 ? ii 0] Mf)n.oc.linic (B)
712 (71) V& V3 V3 0 w, 7, Triclinic
7912 (79) NA V3 V3 -5 — 75 — /s Tr%cl%n%c
95/2 (95) NG NG V3 o 7= ! Triclinic
43 112 (7) NA NG V5 L ! ! Rhombohedral
1 240 (15) V10 V3 V2 0 0 0 Orthorhombic (1)
) y
1368 (23) V10 V2 NG 0 v 0 Monoclinic (B)
1 448 (28) 23 2V2 NG 0 75 0 Monoclinic (P)
44 +7(7) V3 V3 V3 z z z Rhombohedral
15 (15) J—JE fg V3 0 0 0 Orthorhombic (C)
123 (23) L0 £ NG 0 # 0 Monoclinic (B)
128 (28) NE] V2 V3 0 7= 0 Monoclinic (P)
45 712 (7) NG V3 V5 % 2 2 Rhombohedral
11572 (15) /6 £ ! 0 0 0 Orthorhombic (F)
+23/2 (23) L L V5 0 7= 0 Monoclinic (B)
14 (28) NG 1 V3 0 7= 0 Monoclinic (P)
46 T27/4 (1) V2 V2 V2 L ! 1 Rhombohedral
127 (4) % %ﬁ V3 0 0 0 Orthorhombic (C)
127 (4) e £ 22 0 - 0 Monoclinic (B)
1 189/4 (7) 272 V3 V2 0 i 0 Monoclinic (P)
47 +9/4 (1) 1 1 V3 0 0 3 Hexagonal
19 (4) V3 V3 1 0 0 0 Tetragonal (P)
9 (4) V3 %ﬁ 1 0 0 0 Orthorhombic (F)
T 63/4 (7) ¥4 B 1 0 0 0 Orthorhombic (C)
48 1 3/4 (1) 1 1 1 0 0 i Hexagonal
13 (4) 1 1 V3 0 0 0 Tetragonal (P)
73 (4) 1 4 1 0 0 0 Orthorhombic (F)
+21/4 (7) 4 3 V3 0 0 0 Orthorhombic (C)
49 T27/4 (1) 1 1 3 0 0 3 Hexagonal
1 27/4 (1) 3 V3 1 0 0 1 Hexagonal
127 (4) 3 § 3 0 0 0 Orthorhombic (F)
27 (4) 3 3 1 0 0 0 Orthorhombic (P)
78 R Oishi-Tomiyasu - A table of geometrical ambiguities Acta Cryst. (2016). A72, 73-80
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Table 2 (continued)

Determinant

Bravais type

No. (Ratio of determinants) a* * c* coso* cos fB* cos y* in real space
50 $1/2 (1) £ £ £ 0 0 0 Cubic (1)
2 (4) 1 1 V2 0 0 0 Tetragonal (P)
192 (9) 2 % ! 0 0 0 Orthorhombic (F)
1 8 (16) 2 V2 1 0 0 0 Orthorhombic (P)
51 1272 (2) ‘7ﬁ 6 £ 0 0 0 Orthorhombic (1)
1 135/4 (5) o3 Ji3 V2 0 L Monoclinic (B)
1 54 (8) 2 o2 V6 0 0 0 Orthorhombic (C)
5 o
T 54 (8) J6 V& V2 #ﬁ 0 e Triclinic
1 297/4 (11) 22 NG V2 — -1 = Triclinic
52 192 (2) ? f 4 0 0 0 Tetragonal (1)
+45/4 (5) LB 3 V3 0 0 0 Orthorhombic (C)
18 (8) NG V3 V2 0 0 0 Tetragonal (P)
118 (8) A %ﬁ V& 0 L 0 Monoclinic (B)
99/4 (11) ~ DA V2 0 - 0 Monoclinic (B)
53 1322 2 £ £ 0 0 0 Tetragonal (I)
1 15/4 (5) oI5 ! 1 0 0 0 Orthorhombic (C)
16 (8) 1 1 V6 0 0 0 Tetragonal (P)
6 (8) ] L 2 0 % 0 Monoclinic (B)
N i 7 s
t33/4 (11) 5 3 V6 0 7 0 Monoclinic (B)

+ This signifies that the quadratic form is regular.
under the generalized Riemann hypothesis (Oliver, 2014).

In Table 2, information about the regularity of each quad-
ratic form is provided using the results of Jagy et al. (1997) and
Oh (2011). If a set in Table 2 consists of regular quadratic
forms, i.e. they are marked with T, it is possible to prove that
they have perfectly identical peak positions up to co as a
consequence of theorems known about genus representations.

In the table, 38 of the 53 cases are given by regular quad-
ratic forms. In more than half of the cases, the cells are not
derivative of each other. This can be verified by applying the
following proposition.

Proposition 2. Two 3 x 3 positive-definite S;, S, with
A(S,) = A(S,) are derivative of each other if and only if
the ratio of their determinants equals a®> for some rational
number a.

N

Np)

fe,

Figure 1

The reciprocal unit cells of the tetragonal (P, I) and orthorhombic (C)
cells with perfectly identical d spacings (see No. 52); from this figure, it is
not difficult to see that the two left-hand tetragonal cells are derivative of
each other, and the rightmost orthorhombic cell has a number of
two-dimensional sublattices common to the other two. However, the
orthorhombic cell is not derivative of the other two, which is also easily
proved because the ratio of the cell volumes is irrational.

The symbol ! signifies that it is one of the 14 quadratic forms that might be regular, although the regularity has been proved only

Proof. The part ‘only if’ is proved. See Appendix B for the
proof of the ‘if’ part; ‘derivative’ means that there exists
w € GL;(Q) such that wS,'w = S,. Hence if we put a = detw,
a® det S, = det S, is obtained. a)

For example, Nos. 15-22 correspond to derivative lattices,
while Nos. 1-14 do not. Fig. 1 explains the situation in a more
intuitive way, by using unit cells in No. 52.

4. Finiteness theorem of powder indexing solutions
under systematic absences

In what follows, the lattice dimension N is no longer fixed to
N = 3; instead, the case when 1 < N < 4 is considered. As in
the International Tables Volume A (Hahn, 1983), systematic
absences are classified by: (a) the isomorphism class of a
crystallographic group G, (b) the conjugacy class of the site
symmetry group H in G.

Let L C RY be the abelian group consisting of all transla-
tions in G. In this case, H N L = {J, because H is a finite
subgroup of G. For a fixed (G, H), let ", (G, H) be the subset
of the reciprocal lattice L* of L consisting of all the [* € L*
that correspond to systematic absences of type (G, H). The
following general property of systematic absences seems to be
unknown [however, it was used for the theorems in Oishi-
Tomiyasu (2013) without being proved].

Proposition 3. Let M be the index [G : L] and ML* be the
set {MI*:I"eL*}. Then ML*NT,(G,H)=@ holds
regardless of the choice of (G, H).
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See Appendix C for the proof, where the theory of group
cohomology is applied [see Serre (1980) for terminology].

Note that Proposition 3 holds even if M is replaced by M,
the least common multiple of the indices [G : L] of all the
crystallographic groups G with dim L = N.For N = 2,3 and 4,
M*™ equals 24, 48 and 11 520, respectively. When N = 4, this is
seen, for example, using the orders 240 and 2304 of the groups
[[3,3,3]] and [[3,4,3]], respectively.

For a fixed crystallographic group G with the translation
group L = 7" assume that S is a metric tensor of L*, and
that (G,H) is a type of systematic absence. Define
A(S,G,H) C A(S) to be the subset consisting of all
WSy (0 #v e Z") that do not correspond to systematic
absences of the type (G, H).

In §2, we proved that the algorithm of Table 1 is completed
in a finite number of steps, even if A(S,) of an N-by-N
positive-definite metric tensor S, is input instead of A.
Therefore, only a finite number of S satisfy A(S,) C A(S) C
M~2A(S,) for any integer M > 0. By setting the M to M*™, the
following result is obtained.

Theorem 1. For any 2 < N < 4 and a subset A C R_,, only
a finite number of triplets (S, G, H) of the following satisfy
A(S, G, H) = A: (i) the equivalent class of N x N positive-
definite S over Z, (ii) an isomorphism class of a crystal-
lographic group G, (iii) the conjugacy class of a site symmetry
group H in G.

If N =1, S is uniquely determined from A(S). As a result of
Lagrange’s four-square theorem, infinitely many (S, G, H) can
have the same A(S, G, H) if N > 4. Theorem 1 claims that an
intermediate result holds for 2 <N <4, even under
systematic absences. This indicates that only finitely many
solutions exist in powder indexing.

5. Conclusion

Unit cells that involve geometrical ambiguity were exhaus-
tively searched using a function implemented in CONO-
GRAPH. A table containing all of the detected unit cells is
presented. The result indicates that geometrical ambiguity
rarely occurs if high-symmetry cases are excluded. Further-
more, a finiteness theorem on the number of powder indexing
solutions was proved using the algorithm.
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